The Level of Accuracy of Machine Learning Measurements in Predicting
Earthquakes on Lombok Island

Rizky Munandar”

Department of Electronic and Informatics Engineering, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia
Email: rizkymunan03@gmail.com

Article Information:
Received: 03 November 2025
Revised: 29 November 2025
Accepted: 01 January 2026
Published: 02 January 2026

check for
updates

https://doi.org

Copyright © 2025, Author.
This open access article is
distributed under a (CC-BY License)

Introduction

Abstract

Introduction: Lombok Island is one of the regions with the highest seismicity levels in
Indonesia due to its geographical location trapped between two active earthquake
sources: the subduction zone of the Indo-Australian plate with the Eurasian plate to the
south and the Flores Back Arc Thrust Fault to the north. Predictions of earthquakes are
still very minimal; the 2018 Lombok earthquake is one of the reasons why earthquake
detectors need to be developed.

Objective: This study aims to analyze the use of machine learning in measuring the
accuracy of earthquake predictions on the island of Lombok.

Methods: The method used in this study is comparative entrepreneurship which utilizes
secondary data from the earthquake catalog during the January-October 2018 period to
be analyzed using 3 machine larning algorithms, namely Naive Bayes, Artificial Neural
Network (JST) and KNN.

Results: The results showed that the accuracy value using Naive Bayes was 0.6 and the
accuracy using JST and KNN was 0.5. However, this is different from the results of the
evaluation of the three algorithms where Naive Bayes still has a value of 0.6 but JST and
KNN become 0.4.

Conclusion: In conclusion, the accuracy of machine learning measurements from the
three algorithms shows that Naive Bayes has a high accuracy value, but this result may
change if other algorithms are used.
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The importance of this research is very

Lombok Island is one of the areas with the
highest seismicity rate in Indonesia due to its
geographical location trapped between two
active earthquake sources: the Indo-Australian
plate subduction zone with the Eurasian plate to
the south and the Flores Back Arc Thrust Fault
to the north [I]. These complex tectonic
conditions make Lombok a perfect yet alarming
natural laboratory for earthquake research. The
existence of subduction zones in the south,
coupled with the back arc thrust in the north and
local faults, makes this region have very high
tectonic earthquake activity [2].

important considering the consequences of the
disaster caused by a series of earthquakes in
Lombok in 2018. The 2018 Lombok and
Sumbawa earthquakes caused 564 deaths, 1,584
injuries, 396,032 displaced residents, and
damaged 239,954 houses. Economic losses
reached 7.45 trillion rupiah, of which the
residential sector contributed 81 percent of the
total reported damage. What is interesting to
observe is the characteristics of the series of
earthquakes that occurred, where a series of
earthquakes on July 29, 2018, August 5, 2018,
and August 19, 2018 resulted in 559 deaths, 1,478
injuries, and 185,483 buildings damaged. The
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characteristics  of  this large-magnitude
foreshock-mainshock-aftershock the
complexity of seismic patterns in the Lombok
area that are still not fully predictable using
traditional methods [3].

The main obstacle in earthquake disaster
management in Lombok is the lack of proper
prediction capabilities. Traditional earthquake
prediction methods still face major obstacles in
recognizing the complex patterns of interaction
between the Flores Rising Fault and regional
tectonic systems [4]. The Ascending Flores Fault
proved to be more active than the subduction
zone because the "sloping subduction" coupling
pressure from the Flores Thrust down the Lesser
Sunda Islands was stronger. However, its
seismic activity patterns remain difficult to
predict deterministically [5].

Machine learning provides an innovative
paradigm for predicting earthquakes with its
ability to identify complex patterns from vast
historical data. Recent studies have shown
results: the stacking model
combining Random Forest and XGBoost
performed best with the lowest Mean Squared
Error (MSE) value of 0.108 and the highest R-
squared (R?) value of 0.892 Seminar-id, while the
Los Angeles study managed to achieve 97.97%
accuracy in predicting the maximum magnitude
category of an earthquake using Random Forest.
However, the performance of these models is
highly dependent on specific regional tectonic
characteristics [6].

The specification of this study focuses on the
urgent need to assess how well the machine
learning model that has been built can be
adjusted and provide precise predictions for the
typical tectonic context of Lombok [7]. Unlike
other areas that only have one main earthquake
source, Lombok has two earthquake sources
(subduction and back-arc thrust) with different
characteristics. This research is important
because: (1) Lombok has a high level of
population density with weak infrastructure, (2)

reflect

promising

the psychological and social effects of the 2018
earthquake are still felt in the community, (3) the
threat of major earthquakes from the Flores
Rising Fault still exists, such as the 1992 Flores
tsunami which claimed 2,500 lives, and (4) there
is no standard measure of accuracy for machine
learning-based earthquake prediction systems
in areas with tectonic complexity such as
Lombok [8].

In addition, the importance of this research
is reinforced by the fact that Lombok Island is an
area with a high level of seismicity due to the
existence of a complex tectonic order with two
main faults, but there has been no in-depth
study that specifically evaluates the accuracy of
learning algorithms in
predicting earthquake parameters in this region.
Previous studies have focused more on
analyzing the characteristics of earthquakes that
have occurred or general modeling throughout
Indonesia, without providing an accuracy
assessment specific to the typical Lombok
tectonic context [9].

Therefore, this study aims to bridge this
knowledge gap through a systematic analysis of
the accuracy of machine learning models in
predicting earthquakes in Lombok. The findings
of this study are expected to provide a scientific
basis for the development of more effective early
warning systems, support risk-based regional
planning, and ultimately reduce the likelihood
of loss of life and material losses due to future
earthquakes. The success of this study will not
only have an impact on the advancement of
computational seismology, but also provide
immediate benefits for disaster
mitigation efforts in one of the most earthquake-
risk areas in Indonesia [10].

various machine

practical

Method
Types of Research

This study applied a quantitative approach
with a comparative experimental method to
assess the accuracy of three machine learning




algorithms in predicting tsunami and landslide
potential based on seismic data in Lombok
during the January-October 2018 period.

Research Data and Variables

This study utilizes secondary data from the
BMKG earthquake catalog for the Lombok
region during the period from January to
October 2018 with a total of 10 monthly
observations. Independent variables include the
total number of earthquakes each month (X3),
the number of earthquakes with a magnitude
below 3 (Xz), the number of earthquakes with a
magnitude between 3-5 (X3), and the number of
earthquakes with a magnitude greater than 5
(X4). The bound variables included tsunami
potential (Y1) and landslide potential (Y>) with a
classification of Yes/No. The dataset consists of
70% training data (7 months) and 30% test data
(3 months).

Algoritma Machine Learning

This study uses three machine learning
algorithms that will calculate the accuracy of
earthquake predictions, the machine learning
equations used are as follows:
a. Naive Bayes [11]

P(X /Cy). P(Cy)
P(X) 1)

selected based on

P(Ck /X):

Class predictions
maximum probability [12]:

are

§=arg mak, P(C;) [1", P(X; / Cy) 2)

b. Artificial Neural Network (JST)
Forward Propagation [13]:

Z=WillglH1] 4 pll 3)

all = (=) (4)

Activation Function (Sigmoid) [14]:

1
O(Z)= 1+e*

Loss Fuction (Binary Cross-Entropy) [15]:

L(y, )= I [y, log (7. )+(1-y) log (1-7)]  (6)

With gradient descent
learning rate a = 0.01-0.1.

optimization with

c. K-Nearest Neighbors (KNN)
Calcification based on k nearest neighbor using
Euclidean distances [16]:

d(xx;)= /2{;1 (x,Xi1)’ )

Prediction based on majority voting [17]:

y=arg mak. Xieny) 1y =c) (8)

The k parameter is determined through cross-

validation with candidatesk =3, 5, 7.
Furthermore, to measure the accuracy value

more precisely, an evaluation was carried out

using the following equation.

a. Accuracy[18]

TP+TN

accuracy = ———— 9)
TP+TN+FP+FN

b. Precision[19]

.. TP
Precision= e (10)
c. Sensitivity [20]
TP
Recall= m (1 1)
d. F1-Score [21]
Precision x Recall
FI—Score—me (12)

Research Procedure
This research was carried out in stages
according to the following figure.
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Gambar 1. Research Procedure

Results and Discussion
Results

This study evaluated the accuracy of three
machine learning algorithms in predicting the
potential for tsunamis and landslides based on
Lombok earthquake data from January to
October 2018. The dataset that included 10
monthly observations was divided into 70%
training data (7 months) and 30% testing data (3
months). Each algorithm was trained using four
input features: total monthly earthquakes,
number of earthquakes with magnitude < 3,
magnitude 3-5, and magnitude > 5.

Model Precision Comparison

The results of the assessment of the three
machine learning algorithms showed a striking
difference in performance. Table 1 shows the
initial accuracy results for each model.

Table 1. Machine Learning Algorithm Prediction

Accuracy
Model Accuracy
Naive Bayes 0,6667 (66,67%)

Artificial Neural Network 0,5833 (58,33%)

KNN 0,5833 (58,33%)

Based on Table 1, Naive Bayes showed the
most optimal results with an accuracy of 66.67%,
while JST and KNN had the same accuracy of
58.33%. This difference in accuracy shows that
probabilistic algorithms such as Naive Bayes are
more efficient at managing datasets that are
small in size and feature that tend to be
independent compared to algorithms based on
neural networks or distance-based.

Comprehensive Evaluation of the Model

In order to gain a better understanding of
the model's performance, the evaluation was
conducted using four metrics: Accuracy,
Precision, Recall, and F1-Score. The findings of
the thorough evaluation are shown in Table 2.

Table 2. Comprehensive Evaluation of Machine Learning

Algorithms
. F1-

Model Accuracy Precision Recall

Score
Naive Bayes 0,667 0,600 0,600 0,600
Artificial
Neural 0,583 0,500 0,400 0,444
Network
KNN 0,583 0,500 0,400 0,444

N KNN

Figure 2. Comparison of Accuracy, Precision, Recall and
F1-Score

Figure 2 shows the performance comparison
of the four evaluation metrics for the three
algorithms. This graph indicates that Naive
Bayes consistently excels in all evaluation
metrics, with a balanced accuracy and recall
value of 60%, resulting in an F1-Score of 0.600. In
contrast, JST and KNN showed the same




performance with the lowest recall (40%),
indicating the difficulty of both models in
detecting
(tsunami/landslide events).

Further analysis using a confusion matrix
provides an understanding of the types of errors
made by each model. Naive Bayes shows a more
optimal balance between True Positive (TP) and
True Negative (TN), with lower False Negative
(EN) levels compared to JST and KNN. This
condition is crucial in the context of disaster
prediction, where False Negative (the inability
to detect events that actually occur) has a more
dangerous impact than False Positive.

Higher recall in Naive Bayes (60%)
compared to JST and KNN (40%) indicates that
Bayes detect 60% of all
tsunami/landslide events that actually occur,
while JST and KNN are only able to detect 40%.
In the context of early warning systems, the
ability to detect actual events (high recalls) takes
precedence over avoiding false alarms.

accurately positive cases

Naive can

Discussion
Peforma Naive Bayes

Naive Bayes showed the best results with an
accuracy rate of 66.67% and an F1-Score value of
0.600. The advantages of this algorithm can be
outlined through several factors. First, Naive
Bayes works well on small datasets because it
doesn't require a lot of training data to estimate
probability parameters. With only 7 training
observations, Naive Bayes can calculate prior
probabilities and likelihood efficiently using
equations (1) and (2) [22].

Figure 3. Comparison of the Accuracy of the Three
Algorithms

Second, the assumption of conditional
independence between features in Naive Bayes
is in line with the nature of the applied

earthquake data. Variables such as the
frequency of earthquakes of different
magnitudes tend to show less strong

correlations, so the assumption of independence
does not so much violate the existing data
structure. Third, the probabilistic characteristics
of Naive Bayes provide a better explanation in
the context of predicting the uncertainty of
catastrophic events.

These findings are in line with previous
that that probabilistic
algorithms such as Naive Bayes are effective in
classification in fields with high uncertainty and
limited data. Equivalent precision and recall
values (both 60%) indicate the absence of
significant bias against the predictions of a
particular class, which indicates a well-balanced
model [23].

studies indicate

Artificial Neural Network Formation

JST recorded an accuracy of 58.33% with the
lowest F1-Score (0.444) compared to the other
three models. This sub-optimal performance can
be explained through a number of limitations.
First, the "ConvergenceWarning: Maximum
iterations (1000) reached" warning indicates that
the model has not reached the ideal
convergence. The backpropagation process
described in equations (3)-(6) requires many
iterations to reduce the loss function, but with a
small dataset (7 training observations), the
model has difficulty finding consistent patterns.

Second, JST typically requires large datasets
in order to
representations. With only 4 input features and
7 observations, the neural network architecture
is overfitting or underfitting. The low recall
value (40%) indicates that JST tends to be
conservative in predicting positive classes,
possibly due to an imbalance in the learning of
tissue weights.

learn  complex feature




Third, hyperparameters such as learning
rate (a), number of hidden neurons, and
activation functions require deep adjustment.
On datasets, the
adjustment process becomes unreliable due to
the limited validation set, so the obtained model
is not optimal in generalization on the test data
[24].

small hyperparameter

Peforma KNN

KNN showed the same results as JST
(accuracy 58.33%, F1-Score 0.444). Although
KNN is a simple and efficient algorithm, its
suboptimal performance can be explained by the
properties of the algorithm and data. First, KNN
is an instance-based algorithm that relies heavily
on the amount of training data. With only 7
training observations, the nearest neighbor
search room using equation (7) became very
narrow.

Second, KNN is sensitive to the size of
features
Although it has been normalized with Min-Max
Scaling, with only 4 features and limited data
variation, Euclidean distances may not be able to
distinguish meaningful patterns between
observations. Third, the selection of the optimal
k-value using cross-validation on a small dataset
does not produce reliable results because each
fold consists of only a few observations.

The low recall rate (40%) in the KNN
indicates that the majority of votes using
equation (8) tend to favor negative classes,
possibly due to an imbalance in the distribution
of classes in the training set or a less
discriminatory distance between classes [25].

and the number of dimensions.

Implications for Earthquake Early Warning
Systems

The results of this study show that Naive
Bayes is the most appropriate algorithm to
predict tsunami and landslide potential based
on Lombok earthquake data with limited
datasets. The accuracy of 66.67% can be
considered a pretty good basis given the

complexity of geophysical phenomena and the

limitations of data. However, some
improvements are needed for the
implementation of an operational early warning
system.

1,0
: .,

N (= KNN

Recall (Kemampuan Deteksi

Figure 4. Comparison of Recall for Disaster Detection

Figure 4 shows a comparison of the recalls
of the three models, which is an important
measure in early warning systems. Recall
measures the model's ability to detect real-world
events — in the context of a disaster, it includes
the ability to detect an actual tsunami/landslide.
Naive Bayes with a 60% recall showed better
performance than JST and KNN (40%). This 20%
difference is especially important in the context
of disaster risk reduction, as False Negatives can
be fatal.

First, broader data collection is needed to
improve model performance. Multi-year data
with higher temporal resolution (such as weekly
or daily) will provide more observations for
training. Second, the addition of other geological
features such as earthquake depth, epicenter
coordinates, and fault properties can improve
the model's predictive capabilities.

Third, given that Naive Bayes recall is only
60%,
integrated with other real-time monitoring
methods to reduce False Negatives. False
Negatives in the context of disasters can be very
fatal, therefore it is more advisable to use a
hybrid system that integrates machine learning
with traditional seismological sensors and

early warning systems need to be

analysis.




Research Litigation

The study has a number of limitations to be
aware of. The very small size of the dataset (10
observations) hampered the model's ability for
statistical generalization and validation. Second,
the 70:30 data split resulted
observations testing,
representative enough to assess the performance
of the model as a whole. Third, this study only
focuses on predictions of binary categories
(Yes/No) without prioritizing variations in
intensity or the likelihood of events.

Fourth, the variables used are limited to the
quantitative nature of the earthquake without
paying attention to geology, topography, and
hydrological elements that also affect the
potential for tsunamis and landslides. Fifth, the
data range used (January-October 2018) is the
year with extreme seismic activity in Lombok, so
this model is likely biased towards high seismic
conditions and cannot be generalized to normal
situations [26].

in only 3

for which was not

Recommendations for Advanced Research

Based on the results and limitations of this
study, a number of suggestions for the next
study were proposed. First, the collection of
earthquake data over several years (minimum 5-
10 years) should be carried out to increase the
number of observations and capture wider
seismic variability. Second, it is necessary to
explore ensemble algorithms such as Random
Forest, XGBoost, or stacking that have proven
promising results in other studies.

Third, the application of data augmentation
techniques or synthetic data generation can be
done to overcome the limitations of dataset size.
Fourth, the application of deep learning with
more sophisticated structures such as LSTM or
Transformer can be evaluated if more data is
available. Integration with geospatial data (GIS)
and a fifth real-time sensor can improve the
accuracy and real-time capabilities of the
prediction system.

Sixth, the model needs to be validated in
other areas with the same tectonic characteristics
to test the transferability of the model. Seventh,
the development of an Al system that can be
explained and able to explain the reasons behind
the stakeholder
confidence in machine learning-based early
warning systems.

prediction will increase

Conclusion

The results of a study conducted on three
machine learning algorithms to predict the
potential for tsunamis and landslides in Lombok
with earthquake data from January to October
2018 showed that the accuracy of machine
learning measurements varied greatly among
different algorithms. Naive Bayes shows the best
performance with 66.67% 60%
precision, 60% recall, and 0.600 F1-Score,
making it the best algorithm for disaster
prediction with limited datasets. Meanwhile, the
Artificial Neural Network (JST) and K-Nearest
Neighbors (KNN) had the same performance
with an accuracy of 58.33%, precision of 50%,
recall of 40%, and an F1-Score of 0.444,
demonstrating the challenges of both algorithms
in managing small and high-complexity data.
The difference in recall between Naive Bayes
(60%) and JST and KNN (40%) is particularly
important in the context of early warning
systems, as the ability to detect real-world
events of tsunamis and landslides takes
precedence over avoiding false alarms. These
findings the  hypothesis  that
probabilistic algorithms such as Naive Bayes are
more appropriate for predicting earthquakes in

accuracy,

confirm

Lombok with limited data characteristics,
although the 66.67%
improvement through the addition of broader
historical data, the integration of additional
geological features, and the exploration of
ensemble algorithms to future
earthquake early warning systems

accuracy still needs

optimize
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