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Abstract 

Introduction: Lombok Island is one of the regions with the highest seismicity levels in 

Indonesia due to its geographical location trapped between two active earthquake 

sources: the subduction zone of the Indo-Australian plate with the Eurasian plate to the 

south and the Flores Back Arc Thrust Fault to the north. Predictions of earthquakes are 

still very minimal; the 2018 Lombok earthquake is one of the reasons why earthquake 

detectors need to be developed. 

Objective: This study aims to analyze the use of machine learning in measuring the 

accuracy of earthquake predictions on the island of Lombok. 

Methods: The method used in this study is comparative entrepreneurship which utilizes 

secondary data from the earthquake catalog during the January-October 2018 period to 

be analyzed using 3 machine larning algorithms, namely Naive Bayes, Artificial Neural 

Network (JST) and KNN. 

Results: The results showed that the accuracy value using Naive Bayes was 0.6 and the 

accuracy using JST and KNN was 0.5. However, this is different from the results of the 

evaluation of the three algorithms where Naive Bayes still has a value of 0.6 but JST and 

KNN become 0.4.  

Conclusion: In conclusion, the accuracy of machine learning measurements from the 

three algorithms shows that Naive Bayes has a high accuracy value, but this result may 

change if other algorithms are used. 
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Introduction 

Lombok Island is one of the areas with the 

highest seismicity rate in Indonesia due to its 

geographical location trapped between two 

active earthquake sources: the Indo-Australian 

plate subduction zone with the Eurasian plate to 

the south and the Flores Back Arc Thrust Fault 

to the north [1]. These complex tectonic 

conditions make Lombok a perfect yet alarming 

natural laboratory for earthquake research. The 

existence of subduction zones in the south, 

coupled with the back arc thrust in the north and 

local faults, makes this region have very high 

tectonic earthquake activity [2]. 

The importance of this research is very 

important considering the consequences of the 

disaster caused by a series of earthquakes in 

Lombok in 2018. The 2018 Lombok and 

Sumbawa earthquakes caused 564 deaths, 1,584 

injuries, 396,032 displaced residents, and 

damaged 239,954 houses. Economic losses 

reached 7.45 trillion rupiah, of which the 

residential sector contributed 81 percent of the 

total reported damage. What is interesting to 

observe is the characteristics of the series of 

earthquakes that occurred, where a series of 

earthquakes on July 29, 2018, August 5, 2018, 

and August 19, 2018 resulted in 559 deaths, 1,478 

injuries, and 185,483 buildings damaged. The 
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characteristics of this large-magnitude 

foreshock-mainshock-aftershock reflect the 

complexity of seismic patterns in the Lombok 

area that are still not fully predictable using 

traditional methods [3]. 

The main obstacle in earthquake disaster 

management in Lombok is the lack of proper 

prediction capabilities. Traditional earthquake 

prediction methods still face major obstacles in 

recognizing the complex patterns of interaction 

between the Flores Rising Fault and regional 

tectonic systems [4]. The Ascending Flores Fault 

proved to be more active than the subduction 

zone because the "sloping subduction" coupling 

pressure from the Flores Thrust down the Lesser 

Sunda Islands was stronger. However, its 

seismic activity patterns remain difficult to 

predict deterministically [5]. 

Machine learning provides an innovative 

paradigm for predicting earthquakes with its 

ability to identify complex patterns from vast 

historical data. Recent studies have shown 

promising results: the stacking model 

combining Random Forest and XGBoost 

performed best with the lowest Mean Squared 

Error (MSE) value of 0.108 and the highest R-

squared (R²) value of 0.892 Seminar-id, while the 

Los Angeles study managed to achieve 97.97% 

accuracy in predicting the maximum magnitude 

category of an earthquake using Random Forest. 

However, the performance of these models is 

highly dependent on specific regional tectonic 

characteristics [6]. 

The specification of this study focuses on the 

urgent need to assess how well the machine 

learning model that has been built can be 

adjusted and provide precise predictions for the 

typical tectonic context of Lombok [7]. Unlike 

other areas that only have one main earthquake 

source, Lombok has two earthquake sources 

(subduction and back-arc thrust) with different 

characteristics. This research is important 

because: (1) Lombok has a high level of 

population density with weak infrastructure, (2) 

the psychological and social effects of the 2018 

earthquake are still felt in the community, (3) the 

threat of major earthquakes from the Flores 

Rising Fault still exists, such as the 1992 Flores 

tsunami which claimed 2,500 lives, and (4) there 

is no standard measure of accuracy for machine 

learning-based earthquake prediction systems 

in areas with tectonic complexity such as 

Lombok [8]. 

In addition, the importance of this research 

is reinforced by the fact that Lombok Island is an 

area with a high level of seismicity due to the 

existence of a complex tectonic order with two 

main faults, but there has been no in-depth 

study that specifically evaluates the accuracy of 

various machine learning algorithms in 

predicting earthquake parameters in this region. 

Previous studies have focused more on 

analyzing the characteristics of earthquakes that 

have occurred or general modeling throughout 

Indonesia, without providing an accuracy 

assessment specific to the typical Lombok 

tectonic context [9]. 

Therefore, this study aims to bridge this 

knowledge gap through a systematic analysis of 

the accuracy of machine learning models in 

predicting earthquakes in Lombok. The findings 

of this study are expected to provide a scientific 

basis for the development of more effective early 

warning systems, support risk-based regional 

planning, and ultimately reduce the likelihood 

of loss of life and material losses due to future 

earthquakes. The success of this study will not 

only have an impact on the advancement of 

computational seismology, but also provide 

immediate practical benefits for disaster 

mitigation efforts in one of the most earthquake-

risk areas in Indonesia [10]. 

 

Method 

Types of Research 

This study applied a quantitative approach 

with a comparative experimental method to 

assess the accuracy of three machine learning 
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algorithms in predicting tsunami and landslide 

potential based on seismic data in Lombok 

during the January-October 2018 period. 

Research Data and Variables 

This study utilizes secondary data from the 

BMKG earthquake catalog for the Lombok 

region during the period from January to 

October 2018 with a total of 10 monthly 

observations. Independent variables include the 

total number of earthquakes each month (X₁), 

the number of earthquakes with a magnitude 

below 3 (X₂), the number of earthquakes with a 

magnitude between 3-5 (X₃), and the number of 

earthquakes with a magnitude greater than 5 

(X₄). The bound variables included tsunami 

potential (Y₁) and landslide potential (Y₂) with a 

classification of Yes/No. The dataset consists of 

70% training data (7 months) and 30% test data 

(3 months). 

Algoritma Machine Learning 

This study uses three machine learning 

algorithms that will calculate the accuracy of 

earthquake predictions, the machine learning 

equations used are as follows: 

a. Naive Bayes [11] 

P (Ck│X) = 
P (X│Ck) .  P (Ck)

P (X)
   (1) 

Class predictions are selected based on 

maximum probability [12]: 

ŷ=arg makk P(Ck) ∏ Pn
i=1 (Xi│Ck)      (2) 

b. Artificial Neural Network (JST) 

Forward Propagation [13]: 

z[l]=W[l]a[l-1] + 𝑏[𝑙]        (3) 

a[l] = g(z
[l])     (4) 

Activation Function (Sigmoid) [14]: 

σ(z)=
1

1+e-z    (5) 

Loss Fuction (Binary Cross-Entropy) [15]: 

L(y,ŷ)=-
1

m
∑ [y

i
m
i=1 log (ŷ

i
)+(1-y

i
) log (1- ŷ

i
)]    (6) 

With gradient descent optimization with 

learning rate α = 0.01-0.1. 

c. K-Nearest Neighbors (KNN) 

Calcification based on k nearest neighbor using 

Euclidean distances [16]: 

d(xixj)=√∑ (x
il
-xjl)

2n
l=1   (7) 

Prediction based on majority voting [17]: 

ŷ=arg makc ∑ I(y
i
=c)i∈Nk(x)   (8) 

The k parameter is determined through cross-

validation with candidates k = 3, 5, 7. 

Furthermore, to measure the accuracy value 

more precisely, an evaluation was carried out 

using the following equation. 

a. Accuracy [18] 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (9) 

b. Precision [19] 

Precision=
TP

TP+FP
  (10) 

c. Sensitivity [20] 

Recall=
TP

TP+FN
   (11) 

d. F1-Score [21] 

F1-Score=2x
Precision x Recall

Precision + Recall
            (12) 

Research Procedure 

This research was carried out in stages 

according to the following figure. 
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Gambar 1. Research Procedure 

Results and Discussion 

Results 

This study evaluated the accuracy of three 

machine learning algorithms in predicting the 

potential for tsunamis and landslides based on 

Lombok earthquake data from January to 

October 2018. The dataset that included 10 

monthly observations was divided into 70% 

training data (7 months) and 30% testing data (3 

months). Each algorithm was trained using four 

input features: total monthly earthquakes, 

number of earthquakes with magnitude < 3, 

magnitude 3-5, and magnitude > 5. 

Model Precision Comparison 

The results of the assessment of the three 

machine learning algorithms showed a striking 

difference in performance. Table 1 shows the 

initial accuracy results for each model. 

Table 1. Machine Learning Algorithm Prediction 

Accuracy 

Model Accuracy 

Naive Bayes 0,6667 (66,67%) 

Artificial Neural Network 0,5833 (58,33%) 

KNN 0,5833 (58,33%) 

Based on Table 1, Naive Bayes showed the 

most optimal results with an accuracy of 66.67%, 

while JST and KNN had the same accuracy of 

58.33%. This difference in accuracy shows that 

probabilistic algorithms such as Naive Bayes are 

more efficient at managing datasets that are 

small in size and feature that tend to be 

independent compared to algorithms based on 

neural networks or distance-based. 

Comprehensive Evaluation of the Model 

In order to gain a better understanding of 

the model's performance, the evaluation was 

conducted using four metrics: Accuracy, 

Precision, Recall, and F1-Score. The findings of 

the thorough evaluation are shown in Table 2. 

Table 2. Comprehensive Evaluation of Machine Learning 

Algorithms 

Model Accuracy Precision Recall 
F1-

Score 

Naive Bayes 0,667 0,600 0,600 0,600 

Artificial 

Neural 

Network 

0,583 0,500 0,400 0,444 

KNN 0,583 0,500 0,400 0,444 

 

 
Figure 2. Comparison of Accuracy, Precision, Recall and 

F1-Score 

Figure 2 shows the performance comparison 

of the four evaluation metrics for the three 

algorithms. This graph indicates that Naive 

Bayes consistently excels in all evaluation 

metrics, with a balanced accuracy and recall 

value of 60%, resulting in an F1-Score of 0.600. In 

contrast, JST and KNN showed the same 

BMKG Earthquake 

Data Jan-Oct 2018 
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performance with the lowest recall (40%), 

indicating the difficulty of both models in 

accurately detecting positive cases 

(tsunami/landslide events). 

Further analysis using a confusion matrix 

provides an understanding of the types of errors 

made by each model. Naive Bayes shows a more 

optimal balance between True Positive (TP) and 

True Negative (TN), with lower False Negative 

(FN) levels compared to JST and KNN. This 

condition is crucial in the context of disaster 

prediction, where False Negative (the inability 

to detect events that actually occur) has a more 

dangerous impact than False Positive. 

Higher recall in Naive Bayes (60%) 

compared to JST and KNN (40%) indicates that 

Naive Bayes can detect 60% of all 

tsunami/landslide events that actually occur, 

while JST and KNN are only able to detect 40%. 

In the context of early warning systems, the 

ability to detect actual events (high recalls) takes 

precedence over avoiding false alarms. 

 

Discussion 

Peforma Naive Bayes 

Naive Bayes showed the best results with an 

accuracy rate of 66.67% and an F1-Score value of 

0.600. The advantages of this algorithm can be 

outlined through several factors. First, Naive 

Bayes works well on small datasets because it 

doesn't require a lot of training data to estimate 

probability parameters. With only 7 training 

observations, Naive Bayes can calculate prior 

probabilities and likelihood efficiently using 

equations (1) and (2) [22]. 

 
Figure 3. Comparison of the Accuracy of the Three 

Algorithms 

Second, the assumption of conditional 

independence between features in Naive Bayes 

is in line with the nature of the applied 

earthquake data. Variables such as the 

frequency of earthquakes of different 

magnitudes tend to show less strong 

correlations, so the assumption of independence 

does not so much violate the existing data 

structure. Third, the probabilistic characteristics 

of Naive Bayes provide a better explanation in 

the context of predicting the uncertainty of 

catastrophic events. 

These findings are in line with previous 

studies that indicate that probabilistic 

algorithms such as Naive Bayes are effective in 

classification in fields with high uncertainty and 

limited data. Equivalent precision and recall 

values (both 60%) indicate the absence of 

significant bias against the predictions of a 

particular class, which indicates a well-balanced 

model [23]. 

Artificial Neural Network Formation 

JST recorded an accuracy of 58.33% with the 

lowest F1-Score (0.444) compared to the other 

three models. This sub-optimal performance can 

be explained through a number of limitations. 

First, the "ConvergenceWarning: Maximum 

iterations (1000) reached" warning indicates that 

the model has not reached the ideal 

convergence. The backpropagation process 

described in equations (3)-(6) requires many 

iterations to reduce the loss function, but with a 

small dataset (7 training observations), the 

model has difficulty finding consistent patterns. 

Second, JST typically requires large datasets 

in order to learn complex feature 

representations. With only 4 input features and 

7 observations, the neural network architecture 

is overfitting or underfitting. The low recall 

value (40%) indicates that JST tends to be 

conservative in predicting positive classes, 

possibly due to an imbalance in the learning of 

tissue weights. 
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Third, hyperparameters such as learning 

rate (α), number of hidden neurons, and 

activation functions require deep adjustment. 

On small datasets, the hyperparameter 

adjustment process becomes unreliable due to 

the limited validation set, so the obtained model 

is not optimal in generalization on the test data 

[24]. 

Peforma KNN 

KNN showed the same results as JST 

(accuracy 58.33%, F1-Score 0.444). Although 

KNN is a simple and efficient algorithm, its 

suboptimal performance can be explained by the 

properties of the algorithm and data. First, KNN 

is an instance-based algorithm that relies heavily 

on the amount of training data. With only 7 

training observations, the nearest neighbor 

search room using equation (7) became very 

narrow. 

Second, KNN is sensitive to the size of 

features and the number of dimensions. 

Although it has been normalized with Min-Max 

Scaling, with only 4 features and limited data 

variation, Euclidean distances may not be able to 

distinguish meaningful patterns between 

observations. Third, the selection of the optimal 

k-value using cross-validation on a small dataset 

does not produce reliable results because each 

fold consists of only a few observations. 

The low recall rate (40%) in the KNN 

indicates that the majority of votes using 

equation (8) tend to favor negative classes, 

possibly due to an imbalance in the distribution 

of classes in the training set or a less 

discriminatory distance between classes [25]. 

Implications for Earthquake Early Warning 

Systems 

The results of this study show that Naive 

Bayes is the most appropriate algorithm to 

predict tsunami and landslide potential based 

on Lombok earthquake data with limited 

datasets. The accuracy of 66.67% can be 

considered a pretty good basis given the 

complexity of geophysical phenomena and the 

limitations of data. However, some 

improvements are needed for the 

implementation of an operational early warning 

system. 

 
Figure 4. Comparison of Recall for Disaster Detection 

Figure 4 shows a comparison of the recalls 

of the three models, which is an important 

measure in early warning systems. Recall 

measures the model's ability to detect real-world 

events – in the context of a disaster, it includes 

the ability to detect an actual tsunami/landslide. 

Naive Bayes with a 60% recall showed better 

performance than JST and KNN (40%). This 20% 

difference is especially important in the context 

of disaster risk reduction, as False Negatives can 

be fatal. 

First, broader data collection is needed to 

improve model performance. Multi-year data 

with higher temporal resolution (such as weekly 

or daily) will provide more observations for 

training. Second, the addition of other geological 

features such as earthquake depth, epicenter 

coordinates, and fault properties can improve 

the model's predictive capabilities. 

Third, given that Naive Bayes recall is only 

60%, early warning systems need to be 

integrated with other real-time monitoring 

methods to reduce False Negatives. False 

Negatives in the context of disasters can be very 

fatal, therefore it is more advisable to use a 

hybrid system that integrates machine learning 

with traditional seismological sensors and 

analysis. 
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Research Litigation 

The study has a number of limitations to be 

aware of. The very small size of the dataset (10 

observations) hampered the model's ability for 

statistical generalization and validation. Second, 

the 70:30 data split resulted in only 3 

observations for testing, which was not 

representative enough to assess the performance 

of the model as a whole. Third, this study only 

focuses on predictions of binary categories 

(Yes/No) without prioritizing variations in 

intensity or the likelihood of events. 

Fourth, the variables used are limited to the 

quantitative nature of the earthquake without 

paying attention to geology, topography, and 

hydrological elements that also affect the 

potential for tsunamis and landslides. Fifth, the 

data range used (January-October 2018) is the 

year with extreme seismic activity in Lombok, so 

this model is likely biased towards high seismic 

conditions and cannot be generalized to normal 

situations [26]. 

Recommendations for Advanced Research 

Based on the results and limitations of this 

study, a number of suggestions for the next 

study were proposed. First, the collection of 

earthquake data over several years (minimum 5-

10 years) should be carried out to increase the 

number of observations and capture wider 

seismic variability. Second, it is necessary to 

explore ensemble algorithms such as Random 

Forest, XGBoost, or stacking that have proven 

promising results in other studies. 

Third, the application of data augmentation 

techniques or synthetic data generation can be 

done to overcome the limitations of dataset size. 

Fourth, the application of deep learning with 

more sophisticated structures such as LSTM or 

Transformer can be evaluated if more data is 

available. Integration with geospatial data (GIS) 

and a fifth real-time sensor can improve the 

accuracy and real-time capabilities of the 

prediction system. 

Sixth, the model needs to be validated in 

other areas with the same tectonic characteristics 

to test the transferability of the model. Seventh, 

the development of an AI system that can be 

explained and able to explain the reasons behind 

the prediction will increase stakeholder 

confidence in machine learning-based early 

warning systems. 

 

Conclusion 

The results of a study conducted on three 

machine learning algorithms to predict the 

potential for tsunamis and landslides in Lombok 

with earthquake data from January to October 

2018 showed that the accuracy of machine 

learning measurements varied greatly among 

different algorithms. Naive Bayes shows the best 

performance with 66.67% accuracy, 60% 

precision, 60% recall, and 0.600 F1-Score, 

making it the best algorithm for disaster 

prediction with limited datasets. Meanwhile, the 

Artificial Neural Network (JST) and K-Nearest 

Neighbors (KNN) had the same performance 

with an accuracy of 58.33%, precision of 50%, 

recall of 40%, and an F1-Score of 0.444, 

demonstrating the challenges of both algorithms 

in managing small and high-complexity data. 

The difference in recall between Naive Bayes 

(60%) and JST and KNN (40%) is particularly 

important in the context of early warning 

systems, as the ability to detect real-world 

events of tsunamis and landslides takes 

precedence over avoiding false alarms. These 

findings confirm the hypothesis that 

probabilistic algorithms such as Naive Bayes are 

more appropriate for predicting earthquakes in 

Lombok with limited data characteristics, 

although the 66.67% accuracy still needs 

improvement through the addition of broader 

historical data, the integration of additional 

geological features, and the exploration of 

ensemble algorithms to optimize future 

earthquake early warning systems 

 



 
 
  

8 

 

References 

[1]. N. T. Puspito and I. Gunawan, "Seismisitas 

dan Tektonik Kompleks Pulau Lombok," 

Jurnal Meteorologi dan Geofisika, vol. 20, no. 

3, pp. 201–215, 2019. 

[2]. A. Susanti, W. Wibowo, and S. Hartono, 

"Gempa Lombok dan Sumbawa 2018: 

Analisis Dampak dan Kerugian," Jurnal 

Geologi Indonesia, vol. 16, no. 2, pp. 145–160, 

2019. 

[3]. Badan Nasional Penanggulangan Bencana, 

"Laporan Kerugian Gempa Lombok 2018," 

Jakarta, Indonesia, Tech. Rep., 2018. 

[4]. K. Sieh and D. Natawidjaja, "Neotectonics 

of the Sumatra Fault and Flores Back Arc 

Thrust," Journal of Geophysical Research, vol. 

105, no. B12, pp. 28295–28326, 2000, doi: 

10.1029/2000JB900120. 

[5]. R. Harris, "Flores Back Arc Thrust: Seismic 

Activity Pattern in Eastern Indonesia," 

Tectonophysics, vol. 689, pp. 125–138, 2016, 

doi: 10.1016/j.tecto.2016.07.012. 

[6]. M. Ramadhani, "Integrasi Clustering dan 

Ensemble Learning untuk Prediksi 

Magnitudo Gempa Bumi," Seminar 

Nasional Informatika, vol. 5, no. 1, pp. 45–52, 

2024. 

[7]. D. Schorlemmer, M. C. Gerstenberger, S. 

Wiemer, D. D. Jackson, and D. A. Rhoades, 

"Earthquake Likelihood Model Testing," 

Seismological Research Letters, vol. 78, no. 1, 

pp. 17–29, 2007, doi: 10.1785/gssrl.78.1.17. 

[8]. T. Li, Z. Wang, and Y. Chen, "Improving 

earthquake prediction accuracy in Los 

Angeles with machine learning," Scientific 

Reports, vol. 14, art. 24440, Oct. 2024, doi: 

10.1038/s41598-024-76483-x. 

[9]. S. Malvia, P. Panwar, V. S. Rathore, and S. 

Sharma, "Early Earthquake Prediction 

Using Machine Learning Algorithm," in 

Information Systems for Intelligent Systems. 

ISBM 2024, C. S. In, N. S. Londhe, N. Bhatt, 

and M. Kitsing, Eds. Singapore: Springer, 

2025, pp. 357–370, doi: 10.1007/978-981-96-

1210-9_27. 

[10]. J. A. Rosales Huamani, M. A. Rodriguez 

Melgarejo, and L. A. Lazo Pizarro, "A 

Systematic Review About the Use of 

Machine Learning Related to Earthquake 

Studies," Advances in Civil Engineering, vol. 

2025, art. 4432234, May 2025, doi: 

10.1155/adce/4432234. 

[11]. T. Mitchell, Machine Learning. New York, 

NY: McGraw-Hill, 1997. 

[12]. C. M. Bishop, Pattern Recognition and 

Machine Learning. New York, NY: Springer, 

2006. 

[13]. I. H. Witten, E. Frank, M. A. Hall, and C. J. 

Pal, Data Mining: Practical Machine Learning 

Tools and Techniques, 4th ed. Burlington, 

MA: Morgan Kaufmann, 2016. 

[14]. S. Haykin, Neural Networks and Learning 

Machines, 3rd ed. Upper Saddle River, NJ: 

Pearson, 2009. 

[15]. K. P. Murphy, Probabilistic Machine 

Learning: An Introduction. Cambridge, MA: 

MIT Press, 2022. 

[16]. T. Hastie, R. Tibshirani, and J. Friedman, 

The Elements of Statistical Learning: Data 

Mining, Inference, and Prediction, 2nd ed. 

New York, NY: Springer, 2009. 

[17]. Y. LeCun, Y. Bengio, and G. Hinton, "Deep 

learning," Nature, vol. 521, pp. 436–444, 

May 2015, doi: 10.1038/nature14539. 

[18]. I. Goodfellow, Y. Bengio, and A. Courville, 

Deep Learning. Cambridge, MA: MIT Press, 

2016. 

[19]. L. Breiman, "Random Forests," Machine 

Learning, vol. 45, no. 1, pp. 5–32, 2001, doi: 

10.1023/A:1010933404324. 

[20]. T. Chen and C. Guestrin, "XGBoost: A 

Scalable Tree Boosting System," in 

Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge 

Discovery and Data Mining, San Francisco, 



 
 
  

9 

 

CA, USA, 2016, pp. 785–794, doi: 

10.1145/2939672.2939785. 

[21]. K. M. Asim, A. Idris, F. Martínez-Álvarez, 

and T. Iqbal, "Earthquake prediction model 

using support vector regressor and hybrid 

neural networks," PLoS ONE, vol. 13, no. 7, 

art. e0199004, Jul. 2018, doi: 

10.1371/journal.pone.0199004. 

[22]. C. Zhang, H. Wang, and J. Zeng, 

"Earthquake prediction based on deep 

learning: A review," IEEE Access, vol. 7, pp. 

47462–47472, 2019, doi: 

10.1109/ACCESS.2019.2909298. 

[23]. B. Arunadevi, M. M. M. I. Hussain, R. 

Lakshmi, R. MM, and K. Sengupta Das, 

"Risk Prediction of Earthquakes using 

Machine Learning," in 3rd International 

Conference on Electronics and Sustainable 

Communication Systems (ICESC), 

Coimbatore, India, 2022, pp. 1589–1593, 

doi: 10.1109/ICESC54411.2022.9885674. 

[24]. N. B. Jarah, A. H. H. Alasadi, and K. M. 

Hashim, "A New Algorithm for 

Earthquake Prediction Using Machine 

Learning," Journal of Computer Science, vol. 

20, no. 2, pp. 150–156, 2024, doi: 

10.3844/jcssp.2024.150.156. 

[25]. P. Shrote, P. Dasarwar, and S. Dongre, 

"Earthquake Prediction through Machine 

Learning Approach," International Journal 

of Advanced Technology & Research, vol. 15, 

no. 2, pp. 85–92, 2024. 

[26]. D. B. Babu, M. L. N. Revathi, and M. 

Senthil, "Earthquake Prediction Model 

using Random Forest & Gradient Boosting 

Algorithms," Journal of Engineering Science 

& Technology, vol. 19, no. 1, pp. 112–125, 

2024. 

  

 

 


